skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Simon, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. Free, publicly-accessible full text available August 12, 2026
  4. Free, publicly-accessible full text available June 1, 2026
  5. Two-dimensional (2D) metal oxide semiconductors offer a superlative combination of high electron mobility and visible-range transparency uniquely suitable for flexible transparent electronics. Synthesis of these ultrathin (<3 nm) semiconductors by Cabrera-Mott oxidation of liquid metals could enable emerging device applications but requires the precise design of their electrostatics at the nanoscale. This study demonstrates sub-nanometer-level control over the thickness of semiconducting 2D antimony-doped indium oxide (AIO) by manipulating the kinetics of Cabrera-Mott oxidation through variable-speed liquid metal printing at plastic-compatible temperatures (175°C). By modulating both the growth kinetics and doping, we engineer the conductivity and crystallinity of AIO for integration in ultrathin channel transistors exhibiting exceptional steep turn-on, on-off ratios > 106 and an outstanding average mobility of 34.7 ± 12.9 cm2/Vs. This result shows the potential for kinetically controlling 2D oxide synthesis for various high-performance optoelectronic device applications. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  6. Peptide materials offer a broad platform to design biomimetic soft matter, and filamentous networks that emulate those in extracellular matrices and the cytoskeleton are among the important targets. Given the vast sequence space, a combination of computational approaches and readily accessible experimental techniques is required to design peptide materials efficiently. We report here on a strategy that utilizes this combination to predict supramolecular cohesion within filaments of peptide amphiphiles, a property recently linked to supramolecular dynamics and consequently bioactivity. Using established coarse-grained simulations on 10,000 randomly generated peptide sequences, we identified 3500 likely to self-assemble in water into nanoscale filaments. Atomistic simulations of small clusters were used to further analyze this subset of sequences and identify mathematical descriptors that are predictive of intermolecular cohesion, which was the main purpose of this work. We arbitrarily selected a small cohort of these sequences for chemical synthesis and verified their fiber morphology. With further characterization, we were able to link the latent heat associated with fiber to micelle transitions, an indicator of cohesion and potential supramolecular dynamicity within the filaments, to calculated hydrogen bond densities in the simulation clusters. Based on validation from in situ synchrotron X-ray scattering and differential scanning calorimetry, we conclude that the phase transitions can be easily observed by very simple polarized light microscopy experiments. We are encouraged by the methodology explored here as a relatively low-cost and fast way to design potential functions of peptide materials. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026
  7. Risk-driven behaviour provides a feedback mechanism through which individuals both shape and are collectively affected by an epidemic. We introduce a general and flexible compartmental model to study the effect of heterogeneity in the population with regard to risk tolerance. The interplay between behaviour and epidemiology leads to a rich set of possible epidemic dynamics. Depending on the behavioural composition of the population, we find that increasing heterogeneity in risk tolerance can either increase or decrease the epidemic size. We find that multiple waves of infection can arise due to the interplay between transmission and behaviour, even without the replenishment of susceptibles. We find that increasing protective mechanisms such as the effectiveness of interventions, the fraction of risk-averse people in the population and the duration of intervention usage reduce the epidemic overshoot. When the protection is pushed past a critical threshold, the epidemic dynamics enter an underdamped regime where the epidemic size exactly equals the herd immunity threshold and overshoot is eliminated. Finally, we can find regimes where epidemic size does not monotonically decrease with a population that becomes increasingly risk-averse. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  8. Free, publicly-accessible full text available February 1, 2026
  9. Free, publicly-accessible full text available February 1, 2026
  10. Iron oxide-copper-gold (IOCG) deposits are a vital source of copper and critical elements for emerging clean technologies. Andean-type IOCG deposits form in continental arcs undergoing extension, and they have a temporal relationship with magmatism although they do not exhibit a close spatial relation with the causative intrusions. The processes required to form IOCG deposits and their potential connections to iron oxide–apatite (IOA)-type mineralization remain poorly constrained, as well as the characteristics of magmatism linked to both deposit types. Here we combine zircon U–Pb geochronology with zircon trace element geochemistry of intrusive rocks associated with the Candelaria deposit, one of the world’s largest IOCG deposits, to unravel distinctive signatures diagnostic of magmatic fertility. Our results reveal a marked transition in the geochemistry of intrusions in the Candelaria district, characterized by changes in the redox state, water content and temperature of magmas over time. The oldest magmatic stage (~ 128–125 Ma), prior to the formation of the Candelaria deposit, was characterized by zircon Eu/Eu* ratios of 0.20–0.42, and redox conditions of ΔFMQ − 0.4 to + 1.0. The earliest magmatic stage related to the formation of Fe-rich mineralization at Candelaria (118–115 Ma) exhibits low zircon Eu/Eu* ratios (0.09–0.18), low oxygen fugacity values (ΔFMQ ~− 1.8 to + 0.2) and relatively high crystallization temperatures. In contrast, the youngest stage at ~ 111–108 Ma shows higher zircon Eu/Eu* (~ 0.37–0.69), higher oxygen fugacity values (ΔFMQ ~  + 0.4 to + 1.3) and a decrease in crystallization temperatures, conditions that are favorable for the transport and precipitation of sulfur and chalcophile elements. We conclude that Candelaria was formed through two distinct ore-forming stages: the first associated with a reduced, high temperature, water-poor magma developed under a low tectonic stress, followed by a more oxidized, water-rich, and low temperature magmatic event related to a compressional regime. The first event led to Fe-rich and S-poor IOA-type mineralization, while the second event with geochemical signatures similar to those of porphyry copper systems, generated the Cu- and S-rich mineralization. This late stage overprinted preexisting IOA mineralization resulting in the formation of the giant Candelaria IOCG deposit. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025